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THE LOCALIZED SINGLE-VALUED EXTENSION
PROPERTY AND LOCAL SPECTRAL THEORY

Jong-Kwang Yoo*

Abstract. In this paper, we study properties SVEP, Bishop’s
property (β), property (δ), decomposability, property (β)ε, sub-
scalarity, Kato spectrum, generalized Kato decomposition, finite
ascent for bounded linear operators in Banach spaces.

1. Introduction and preliminaries

Throughout this paper, let X be a non-zero complex Banach space
over the complex field C and let L(X) be the Banach algebra of all
bounded linear operators on X. As usual, given T ∈ L(X), we de-
note by N(T ), σap(T ), σ(T ) and ρ(T ) the kernel, the approximate point
spectrum, the spectrum and the resolvent set of T, respectively and let
Lat(T ) stand for the collection of all T -invariant closed linear subspaces
of X. For a T -invariant closed linear subspace Y of X, let T |Y denote
the operator given by the restriction of T to Y.

The local resolvent set ρT (x) of T at the point x ∈ X is defined as the
union of all open subsets U of C such that there exist an analytic function
f : U → X which satisfies the equation (λI−T )f(λ) = x for all λ ∈ U.

The local spectrum σT (x) of T at x is the set defined by σT (x) :=
C \ ρT (x). Obviously, σT (x) is a closed subset of σ(T ).
For arbitrary T ∈ L(X) and F ⊆ C, let XT (F ) = {x ∈ X : σT (x) ⊆ F}
denote the corresponding local spectral subspace of T . It is clear that
XT (F ) is a hyperinvariant subspace of X, but need not closed in general,
see [8] and [14].

An operator T ∈ L(X) is said to have the single-valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc U
centered at λ0, the only analytic function f : U → X which satisfies the
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equation (λI − T )f(λ) = 0 for all λ ∈ U is the constant function f ≡ 0.
An operator T ∈ L(X) is said to have the SVEP if T has the SVEP at
every point λ ∈ C.

Evidently, an operator T ∈ L(X) has SVEP at every point of the
resolvent ρ(T ) := C \ σ(T ). The identity theorem for analytic functions
ensures that every T ∈ L(X) has SVEP at the points of the boundary
∂σ(T ) of the spectrum σ(T ). In particular, every operator has the SVEP
at every isolated point of the spectrum. Clearly, T has SVEP at λ
precisely when λI−T has SVEP at 0. It follows from Proposition 1.2.16
[14] that T has the SVEP if and only if XT (φ) = {0}, and this is the
case if and only if XT (φ) is closed.

We recall that an operator T ∈ L(X) is called decomposable provided
that for each open cover {U, V } of the complex plane C, there exist
Y, Z ∈ Lat(T ) for which

Y + Z = X, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

This class is quite general, containing for example all compact operators,
normal operators on a Hilbert spaces, Dunford’s spectral operators and
generalized scalar operators, see the monographs by [1], [8] and [14].

The single-valued extension property dates back to the early days of
local spectral theory and appeared in the work of Dunford [9], [10]. A
thorough discussion of this property within the theory of spectral and
generalized spectral operators may be found in the seminal monographs
by Dunford-Schwartz [11] and Colojoară and Foias [8]. The localized
version of single-valued extension property was introduced by Finch [12].
As witness by the more recent accounts in [1] and [14], localized single-
valued extension property has now developed into one of the major tools
in the local spectral theory and Fredholm theory for operators on Banach
spaces.

In this paper, we proved that if TST = T 2 and STS = S2 then
T, S, ST and TS share many spectral properties and local spectral prop-
erties as subscalarity, finite ascent, semi-regularity, GKD, decompos-
ability, Bishop’s property (β), Dunford’s property (C), SVEP. We also
proved that if TST = T 2 and STS = S2 then σK(T )\{0} = σK(S)\{0}.

2. Main results

We consider the case that the operators S, T ∈ L(X) satisfy the
operator equations TST = T 2 and STS = S2. This case was studied
first in [20]. It is well known [20] that if A,B ∈ L(X) such that A2 = A,
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B2 = B, T = AB and S = BA, then TST = T 2 and STS = S2.
Moreover, ω(T ) \ {0} = ω(S) \ {0} for the spectrum ω = σ, as well as
for the point spectrum, approximate point spectrum, residual spectrum,
continuous spectrum, Fredholm spectrum. If S, T ∈ L(X) satisfy the
operator equations TST = T 2, STS = S2, and 0 ∈ ρ(T ) or 0 ∈ ρ(S)
then clearly T = I = S. So we always assume that T and S are not
invertible.

For an arbitrary operator T ∈ L(X), let

D(T ) := {λ ∈ C : T fails to have SVEP atλ}.
Obviously, D(T ) is empty precisely when T has SVEP. Moreover, it
follows readily from the identity theorem for analytic functions that
D(T ) is open, and therefore contained in the interior of the spectrum
σ(T ).

Theorem 2.1. Let T, S ∈ L(X) be such that TST = T 2 and STS =
S2. Then D(T ) = D(ST ) = D(TS) = D(S).

Proof. First, we prove that D(T ) = D(ST ). Suppose that λ0 /∈ D(T ).
Then T has SVEP at λ0. Let f : U → X be an analytic function defined
on an open neighborhood U of λ0 such that

(2.1) (λI − ST )f(λ) = 0 for all λ ∈ U.

Because of TST = T 2, we have

(2.2) (λI − T )Tf(λ) = T (λI − ST )f(λ) = 0 for all λ ∈ U,

In equation (2.2), the SVEP of T at λ0 entails that Tf(λ) = 0 for
all λ ∈ U, and hence STf(λ) = 0 for all λ ∈ U. In equation (2.1), we
deduce f(λ) = 0 for all 0 6= λ ∈ U. By the continuity of f, f(λ) = 0 for all
λ ∈ U, and hence ST has SVEP at λ0. This implies that D(ST ) ⊆ D(T ).
Conversely, we assume that λ0 /∈ D(ST ). Then ST has SVEP at λ0. Let
g : V → X be an analytic function defined on an open neighborhood V
of λ0 such that

(2.3) (λI − T )g(λ) = 0 for all λ ∈ V.

Then we have

(2.4) (λT − T 2)g(λ) = 0 for all λ ∈ V.

Because of T 2 = TST, we have

(2.5) (λI − ST )STg(λ) = ST (λI − T )g(λ) = 0 for all λ ∈ V,

In equation (2.5), the SVEP of ST at λ0 entails that STg(λ) = 0 for
all λ ∈ V, and hence T 2g(λ) = TSTg(λ) = 0 for all λ ∈ V. In equation
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(2.4), we deduce Tg(λ) = 0 for all 0 6= λ ∈ V. From (2.3), we have
g(λ) = 0 for all 0 6= λ ∈ V. By the continuity of g, g(λ) = 0 for all λ ∈ V,
and hence T has SVEP at λ0. This implies that D(T ) ⊆ D(ST ). Similar
arguments as above show that D(ST ) = D(TS) = D(S).

Following the similar proof of Theorem 2.1, we can easily show the
next corollary.

Corollary 2.2. Let T, S ∈ L(X). Then D(ST ) = D(TS). In par-
ticular, ST has SVEP if and only if TS has SVEP.

An operator T ∈ L(X) on a complex Banach space X has Dunford’s
property (C) if XT (F ) is closed for every closed set F ⊆ C. Evidently,
Dunford’s property (C) implies that SVEP.

Theorem 2.3. ([3]) Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. If one of operators T, ST, TS and S has Dunford’s property
(C), then all the operators satisfy Dunford’s property (C).

Let U be an open subset of the complex numbers C and H(U,X)
be the Frécht algebra of all analytic X-valued functions on U endowed
with uniform convergence on compact sets of U. Recall that an operator
T ∈ L(X) is said to satisfy Bishop’s property (β) at λ ∈ C if there
exists r > 0 such that for every open subset U ⊂ D(λ, r), open disc
centered at λ with radius r, and for any sequence (fn)n ⊂ H(U,X)
if limn→∞(µI − T )fn(µ) = 0 in H(U,X) then limn→∞ fn(µ) = 0 in
H(U,X). For an arbitrary operator T ∈ L(X), let

σβ(T ) := {λ ∈ C : T fails to satisfy Bishop’s property (β) atλ}.
We say that T ∈ L(X) satisfies Bishop’s property (β) precisely when
σβ(T ) = φ. Obviously, Bishop’s property (β) implies Dunford’s property
(C).

Theorem 2.4. Let T, S ∈ L(X) be such that TST = T 2 and STS =
S2. If one of operators T, ST, TS and S has Bishop’s property (β) at
λ ∈ C, then all the operators satisfy Bishop’s property (β) at λ ∈ C.
Moreover,

σβ(T ) = σβ(ST ) = σβ(TS) = σβ(S).

Proof. It suffices to show that if T has Bishop’s property (β) at λ0 ∈ C
then ST, TS and S satisfies Bishop’s property (β) at λ0 ∈ C. Let (fn)n

be a sequence of X-valued analytic functions in a neighborhood U of λ0

such that

(2.6) lim
n→∞(λI − ST )fn(λ) = 0 inH(U,X),
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Since T 2 = TST, we have

(2.7) lim
n→∞(λI − T )Tfn(λ) = lim

n→∞T (λI − ST )fn(λ) = 0 in H(U,X),

Suppose that T has Bishop’s property (β) at λ0. By (2.7), limn→∞ Tfn(λ) =
0 in H(U,X) and then

lim
n→∞STfn(λ) = 0 in H(U,X).

It follows from (2.6) that (λfn(λ))n converges to 0 on each compact
set. By the maximum modulus principle, (fn)n converges to 0 on each
compact set, and hence ST has Bishop’s property (β) at λ0. Similar
arguments as above show that both TS and S satisfies Bishop’s property
(β) at λ0 ∈ C.

Corollary 2.5. Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. Then the following assertions are equivalent;

(a) T has Bishop’s property (β);
(b) ST has Bishop’s property (β);
(c) TS has Bishop’s property (β);
(d) S has Bishop’s property (β).

Recall from [14] that an operator T ∈ L(X) is said to have the de-
composition property (δ) if the adjoint operator T ∗ on the dual space X∗
satisfies Bishop’s property (β).

In [4], Albrecht, Eschmeier and Neumann showed that an operator
T ∈ L(X) is decomposable if and only if T has both properties (β) and
(δ). Moreover, Albrecht and Eschmeier proved that the property (β)
and (δ) are dual to each other in the sense that an operator T ∈ L(X)
satisfies (β) if and only if the adjoint operator T ∗ on the dual space
X∗ satisfies (δ) and that the corresponding statement remains valid if
both properties are interchanged. Obviously, an operator T ∈ L(X) is
decomposable precisely when both T and T ∗ have property (β).

Corollary 2.6. Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. Then the following statements are equivalent;

(a) T has property (δ) (resp. decomposable) ;
(b) TS has property (δ) (resp. decomposable) ;
(c) ST has property (δ) (resp. decomposable) ;
(d) S has property (δ) (resp. decomposable).

The Kato resolvent set ρK(T ) of an operator T ∈ L(X) on a complex
Banach space X is defined as the set of all λ ∈ C for which (λI − T )X
is closed and N(λI − T ) ⊆ (λI − T )∞(X), where (λI − T )∞(X) :=
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⋂∞
n=1(λI−T )nX is the hyperrange of T. The Kato spectrum of T ∈ L(X)

is defined by σK(T ) =: C \ ρK(T ). The Kato spectrum σK(T ) is always
a non-empty compact subset of C and

∂σ(T ) ⊆ σK(T ) ⊆ σap(T ) ⊆ σ(T ).

Moreover, σK(T ) ⊆ σap(T ) ∩ σsur(T ), where σsur(T ) := {λ ∈ C : (λI −
T )(X) 6= X} is the surjectivity spectrum of T. Furthermore, σK(f(T )) =
f(σK(T )) for every analytic function f in a neighborhood of σ(T ), see
[1] and [14].

Theorem 2.7. Let T, S ∈ L(X) be such that TST = T 2 and STS =
S2. Then

σK(T ) \ {0} = σK(TS) \ {0} = σK(ST ) \ {0} = σK(S) \ {0}.
Proof. Assume to the contrary that λ ∈ ρK(T ) and λ 6= 0. Then by

Theorem 1.2 of [19], we have λ 6∈ σap(TS). Thus N(λI − TS) = {0}
and (λI − TS)(X) is closed, which implies that λ ∈ ρK(TS). The same
arguments as above show that σK(A)\{0} = σK(B)\{0}, where A,B =
T, ST, TS, S.

Corollary 2.8. Let T, S ∈ L(X). Then σK(TS) \ {0} = σK(ST ) \
{0}.

Let E(U,X) be the Frécht algebra of all infinitely differentiable X-
valued functions on U ⊂ C endowed with the topology of uniform con-
vergence on compact subsets of U of all derivatives. Recall that an
operator T ∈ L(X) is said to have property (β)ε at λ0 ∈ C if there exists
a neighborhood U of λ0 such that for each open set O ⊂ U and for
any sequence (fn)n of X-valued functions in E(U,X) the convergence
of (λI − T )fn(λ) to zero in E(U,X) yields to the convergence of fn to
zero in E(U,X). For an arbitrary operator T ∈ L(X), let

σ(β)ε
(T ) := {λ ∈ C : T fails to satisfy (β)ε atλ}.

We say that T ∈ L(X) satisfies property (β)ε if precisely when σ(β)ε
(T ) =

φ. It is well known that property (β)ε characterizes those operators with
some generalized scalar extension.

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable
complex valued functions defined on the complex plane C with the topol-
ogy of uniform convergence of every derivative on each compact subset
of C. An operator T ∈ L(X) is called a generalized scalar operator if
there exists a continuous algebra homomorphism Φ : C∞(C) → L(X)
satisfying Φ(1) = I, the identity operator on X and Φ(z) = T, where
1 denotes the constant function on C and z the identity function on C.
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A bounded linear operator is said to be subscalar if it is similar to the
restriction of a generalized scalar operator to one of its closed invariant
subspaces.

Theorem 2.9. Let T, S ∈ L(X) be such that TST = T 2 and STS =
S2. If one of operators T, ST, TS and S has property (β)ε at λ0 ∈ C,
then each operators satisfies property (β)ε at λ0 ∈ C. Moreover,

σ(β)ε
(T ) = σ(β)ε

(ST ) = σ(β)ε
(TS) = σ(β)ε

(S).

Proof. We have to show that if T has property (β)ε at λ0 ∈ C then ST,
TS, and S satisfies property (β)ε at λ0 ∈ C. Suppose that λ0 6∈ σ(β)ε

(T ).
Let U be a neighborhood of λ such that U ∩ σ(β)ε

(T ) = φ, and let (fn)n

be a sequence in E(U,X) such that

(2.8) lim
n→∞(λI − ST )fn(λ) = 0 in E(U,X).

Then we have

lim
n→∞(λI − T )Tfn(λ) = lim

n→∞T (λI − ST )fn(λ) = 0 in E(U,X).

Because of λ0 6∈ σ(β)ε
(T ), limn→∞ Tfn(λ) = 0 for all λ ∈ U and then

lim
n→∞STfn(λ) = 0 in E(U,X).

From (2.8), we obtain (λfn(λ))n converges to 0 in E(U,X). By Lemma
2.1 of [7], (fn(λ))n converges to 0 in E(U,X) and hence ST has prop-
erty (β)ε at λ0 ∈ C. This implies that σ(β)ε

(ST ) ⊆ σ(β)ε
(T ). Similar

arguments as above show that

σ(β)ε
(S) ⊆ σ(β)ε

(TS) ⊆ σ(β)ε
(ST ) ⊆ σ(β)ε

(T ).

It remains to show that σ(β)ε
(T ) ⊆ σ(β)ε

(S). It follows from arguments
similar to those in the proof of Theorem 2.4, we omit the proof.

Corollary 2.10. Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. Then the following assertions are equivalent;

(a) T is subscalar;
(b) TS is subscalar;
(c) ST is subscalar;
(d) S is subscalar.

Corollary 2.11. Let T, S ∈ L(X). If T and S are injective, then
TS is subscalar if and only if ST is subscalar.
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Recall that an operator T ∈ L(X) is said to have finite ascent if
N(T p) = N(T p+1) for some positive integer p. The ascent of T ∈ L(X),
defined as p(T ) := inf{n ∈ N : N(Tn) = N(Tn+1)}, and descent of
T ∈ L(X), defined as q(T ) := inf{n ∈ N : Tn(X) = Tn+1(X)}, the
infimum over the empty set is taken∞. It is well known from Proposition
38.3 [13] that p(T ) and q(T ) are both finite then if p(T ) = q(T ). Also,
it is well known from [1] that the following implications hold:

p(λI − T ) < ∞ =⇒ T has SVEP at λ,

and dually

q(λI − T ) < ∞ =⇒ T ∗ has SVEP at λ.

The property that λI − T has finite ascent is closely connected to λ
being a pole of the resolvent of T, see more details [1] and [13].

Proposition 2.12. Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. Then the following assertions are equivalent;

(a) T has finite ascent ;
(b) TS has finite ascent ;
(c) ST has finite ascent ;
(d) S has finite ascent.

Proof. By Proposition 10 [6] and Corollary 2.2 [21].

As usual, an operator T ∈ L(X) is said to be semi-regular if T (X)
is closed and N(T ) ⊆ T∞(X). Evidently, T is semi-regular if and only
if 0 ∈ ρK(T ). It is well known that the Kato resolvent set ρK(T ) =
ρK(T ∗) is an open subset of C. Consequently, Theorem 2.1 together
with Théoréme 2.7 of [17] yields the following corollary.

Corollary 2.13. Let T, S ∈ L(X) be such that TST = T 2 and
STS = S2. If T has SVEP then ρK(T ) = ρK(TS) = ρK(ST ) = ρK(S).
Moreover, the following statements are equivalent;

(a) T is semi-regular;
(b) TS is semi-regular;
(c) ST is semi-regular;
(d) S is semi-regular.

An operator T ∈ L(X) is said to admit a generalized Kato decom-
position(GKD), if there exists a pair of T−invariant closed subspaces
(M, N) such that X = M ⊕N, the restriction T |M is semi-regular and
T |N is quasi-nilpotent. If we assume in the definition above that T |N
is nilpotent, i.e. there exists d ∈ N for which (T |N)d = 0, then T is
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said to be of Kato type of operator of order d, see more details [1]. An
important class of operators of Kato type is given by the class of all
semi-Fredholm operators. Obviously, every semi-regular operator has a
GKD such as M = X and N = {0} and a quasi-nilpotent operator has
a GKD such as M = {0} and N = X. We denote as usual its spectral
radius by r(T ) := max{|λ| : λ ∈ σ(T )}.

Theorem 2.14. Let T, S ∈ L(X) be such that TST = T 2 and STS =
S2. Suppose that T ∈ L(X) and S ∈ L(X) are surjective. If T has SVEP
then the following statements are equivalent.

(a) T admits a GKD;
(b) TS admits a GKD;
(c) S admits a GKD;
(d) ST admits a GKD.

Proof. (a) ⇒ (b). Suppose that T admits a GKD. Then there exists
a pair of T -invariant closed subspaces (M, N) such that X = M ⊕ N,
the restriction T |M is semi-regular and T |N is quasi-nilpotent. Let
Y := T 2(M) and Z := T 2(N). Then, clearly Y and Z are closed TS-
invariant subspaces. Since T is surjective,

X = T 2(M) + T 2(N) ⊆ T 2(M) + T 2(N) = Y + Z,

and then X = Y + Z. Since M, N ∈ Lat(T ), we have

Y ∩ Z = T 2(M) ∩ T 2(N) ⊆ M ∩N = {0},
and hence X = Y ⊕ Z. By Corollary 2.13, TS is semi-regular. Since
semi-regularity is inherited by restrictions on closed invariant subspaces,
TS|Y is semi-regular. Note that, since r(TS|Z) ≤ r(T |Z)r(S|Z) and
T |N is quasi-nilpotent, the product TS|Z is quasi-nilpotent. Hence TS
admits a GKD.

(b) ⇒ (c). Suppose that TS admits a GKD. Let M1, N1 ∈ Lat(TS)
be such that X = M1 ⊕ N1, the restriction TS|M1 is semi-regular and
TS|N1 is quasi-nilpotent. Then clearly Y1 := S(M1) and Z1 := S(N1)
are closed S-invariant subspaces. Since S is surjective, we have

X = S(M1) + S(N1) ⊆ S(M1) + S(N1) = Y1 + Z1,

and hence X = Y1 + Z1. Because of M1, N1 ∈ Lat(TS), we have

Y1 ∩ Z1 = S(M1) ∩ S(N1) ⊆ M1 ∩N1 = {0},
and hence X = Y1 ⊕ Z1. By Corollary 2.13, S is semi-regular and
hence S|Y1 is semi-regular. Since TS|N1 is quasi-nilpotent, the product
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STS|Z1 = S2|Z1 is quasi-nilpotent and hence S|Z1 is quasi-nilpotent.
Therefore S admit a GKD.

(c) ⇒ (d). In the proof of (a) ⇒ (b), we interchange T and S.
(d) ⇒ (a). The proof is similar to that of (b) ⇒ (c).

Corollary 2.15. Suppose that T ∈ L(X) and S ∈ L(X) are sur-
jective. If TS has the SVEP then TS admits a GKD if and only if ST
admits a GKD.
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